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1. Ir¢ Aduction

AD 744988

Let »
(1.1) Asla,] (1,9 = 1yueey m) | ]
be a matrix of order n with e.iements in a field F : ' 4
and let ' _ | ‘ :
(1.2) X = [x,,] _ (1,3 = 1,..., n)

be the matrix of order n whose elements are n2 independent indeterminates

over F. We call the Hadamard product : - | 1

13*13] - ‘ :

the formal incidence matrix associated with A. The elements of M belong

(1.3) M=AxX-=[a

to the polynomial ring |

L (1-’4) F* = F[x11,x12,..., xnn]-

The matrix A is fully indecomposable provided that it does not contain a

zero submatrix of size r by n - r. We now state at the outsetone of our

main conclusions. ;
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Theorem 1.1 _Iﬁ A _‘E a matrix 95 order n with elements in a fleld

F and let M = A # X be the formal incidence matrix associated with A.

Suppose that det(M) ¢ C. Then A 1s fully indecomposable if and only if

det(M) is an irreducible polynomial in F*.

In‘ what follows we develop some of the basic properties of formal
incidence matrices. We also é\ma.rize some recent investigations on
matrices whose elements are linear forms in t independent indeterminates
over F. Our results are of interest both from the al'gebraic oad com-
binatorial points of view.

The motivation for much of this material appears in the much earlier
investigations of Kantor {8], Frobenius [5], and Schur [16]. These authors
Study certain determinantal properties of matrices whose elements are
linear fa;rms in independent variables over tne complex field. A more
recent account of this theory is avai;i.able an {10].

Despite these early origins the subject matter of this paper is still
very.ufuch in its infancy. However, ve anticipate that matrices in coxix-
Junction v:rith indeterm:inates will play an increasingly important role in

& )

the study of various combinatorial probllems.

2. The Formal Incidence Matrix
In wvhat follows we extend in an _oﬁvious way some familiar terfninolo@

for (O,1)-mt:ices to matrices with elements in an arbitrary field. Let

(1=1I,u..’ n; J=1".,., n)

(2.1) . A= [aiql

be a matrix of size m by n with elements in a field F.' We may regard A
I ] . .

inacamema ¥ A
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as the incidence matrix for m subsets of an n-set. Here the nonzero

elements of F play the role of 1's in the standard (0,1)-matrix repre-
sentation. A line of A denotes a row or a column of A. A cover of A
is a set of lines of A that contain (or cover) all of the nonzero

elements o® A. The cover is minimal provided that the number of lines
in the cover is minimal. The term rank of A is the maximal number of

nonzero elements of A with no two of the elements on a line. The

. familiar Frobenlus-K&nig theorem asserts that the term rank of A and

—— g —————— .. ~——

Let

(2.2) X = [xial (Lt =1,..., m; J=1,..., n)

be the matrix of size m by n whose elements are mn independent indeterminatec
over F. We cell the Hadamard product

(2.3) M=A=*X=[a ]

13513

the formal incidence matrix associated with A. The elements of M belong

to the polynomial ring

(2.4) = F[x”,xw,..., xmn]'

The formal incidence matrix has been very useful in various combi-
natorial investigations (2, 4, 11, 12, 18]. The following observation
of Edmonds [4] equates an important combinatorial invariant of A with

an algebraic invariant of M. The term rank of A is equal to the rank

of M. We note that a submatrix of M of order r has a nonzero determinant

N




if and only if the corresponding submatrix of A has term rank r. But
the rank of a matrix is the maximal order of a square submatrix with a
nconzero determinant and hence the conclusion follows.

We recall that a square matrix of order n with elements in F is

fully indecomposable provided that it does not contain a zero submatrix

of size r by n - r. A fully indecomposable matrix does not have a cover

of n lines apart from the two obvious covers of n rows and n columns. s

3. Preliminary Lemmas ]
We first investigate some special properties concerning the fac- :
torization »f homogeneous polynomials. Again let

@) X = [xiJ] (1,3 =1,..., n)

be the matrix of order n whose elements are n2 independent indeterminates
over F. The associated polynomial ring is now

(3.2) F* = FUX,15%yp0 01 X ]

let xr denote a submatrix of X of order r. We form products of the in-
determinates of Xr. These products each contain r indeterminates of Xr

with no two of the indeterminates on a line of xr. We designate these
u = r! producis by

(3'3) y.‘,---, yu.

We are concerned with polynomials of the farm
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wvhere the coefficienis are in F and not all of the a, are zero. We say

that the polynomial f has an indeterminate pattern based on Xr' All of

the polynomials with an indeterminate pattern based on )(r are homogeneous
and of degree r over F. Two well known polynomials with an indeterminatc
rattern based on X_ are det(Xr) and per(Xr). The polynomials with an

indeterminate pattern based on X are of the form

.90 £=85(1),..., o(n)10(1)""" *no(n)’
wvhere ¢ ranges over the n! permutations of t,..., n.
Two submatrices B and C of orders r and n - r, respectively, of a

matrix A of order n are called complementary provided that they are

formed from complementary sets of lines of A. The following lemma is of

some intrinsic interest.

Lemma 3.1. Let h be a polynomial with an indeterminate pattern

based on X _g_n_d suppose that in F* we have
(3-6) h = fg,

vhere f and g are polynomials of positive degrees r and n - r, respective-

ly. Then f and g are polynomials with indeterminate patterns based on

)(r and Xn - respectively, where Xr and Xn . r BTe complementary sub-

matrices of X of orders r and n - r, respectively.

Proof. We write

(3.7) f=f1+'00+fp, 8=g1+0-'+8°’ h=h1+oo.+h7.

In (3.7) each term f1 of £ is required to be a nonzero scalar multiple

A

e
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of a product of indeterminates and fi and { 3 are not scalar multiples
for 1 # ). The same restrictions are placed on the terms 8y of g and

* »* :
hi of h. We let Fi,j denote the integral domain F with the indeterminate 3

xi,j deleted.

Additinh Y daitin

We assert that f and g do not contain an indeterminate Xy 3 in com-
mon. If this were the case, then both f and g would be polynomials in i

»*
x,, of degree at least 1 over Fi 3 But this contradicts the fact that :

1
*

h is a polynomial in xi.‘,i of degree at most 1 over FiJ' Hence it follows

that f and fkgl. do not contain identical indeterminates unless both

18,

i=kand J =4. Thus there is no combining of terms in the product fg

and we have

(3.8) T = po.

It follows that f and g are homogeneous polynomials of degrees r and

n - r, respectively. 1
A typical term f 1 of f appears in h and has an indeterminate pattern

vased on a certain submatrix X’ of X. It follows that a typical term

g 3 of g must have ar indeterminate pattern based on the complementary

*
submatrix X of X’ with respe:t to X. This is the case because figj is

a term of h and h consists only of terms vith an indeterminate pattern based

cr. X. Finally, we assert that a second term fk of £ must also have an

indeterminate pattern based on X’. This is because g 3 already has its




* *
indeterminate pattern based on X . Hence X' = Xr and X = )(n -y

This proves the lemma.

The following lemma is used frequently in the study of fully in-

decomposable matrices [1]. We include the short argument for completeness.

Lemma 3.2. Let A be a matrix of order n with elements in a field F

;_u_mg let M= A x X .b_e the formal incidence matrix associated with A. Let

Mi 3 denote the submatrix _c£ M obtained }31 the deletin of row 1 and column

J of M. Suppose that A is fully indecomposable. Then

(3.9) det(MiJ) £ 0 (4,3 =1, ..., n).

Proof. Suppose that det(Mij) = O for some 1 and J. Then
(3.10) rank(Mid) = term ra.nk(MiJ) <n-2.

It follows from the Frobenius-Kénig theorem that Mi j has a cover of n - 2

lines. These n - 2 lines plus the deleted row and column give a cover of

A of n lines. This cover implies that A is not fully indecomposable.

k., The Main Theorems

We now state and prove the theorem cited in Section 1.

Theorem 4.1. Let A be a matrix of order n with elements in a field

F and let M = A » X be the formal incidence matrix associated with A.

Suppose that det(M) # 0. Then A is fully indecomposable if and only if

*
det(M) is an irreducible polynomial in F .
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Proof. We take as our hypothesis that det(M) is an irreducible
*
polynomial in F . If the matrix A were not fully indecomposable, then

there would exist permutation matrices P and Q such that

(4.1) PMQ = -

where M1 and M2 are matrices of orders r and n - r, respectively, and O

is a zero matrix of size r by n - r. But then

(.2) det(M) = :t:).e*t;(M1 )det(Mz),

»*
and this contradicts the hypothesis that det(M) is irreducible in F .
Next we take as our hypothesis that the matrix A is fully indecom-

posable. Suppose that det(M) is reducible. Then we have
(4.3) det(M) = fg.

Now det(M) is a polynomial with an indeterminate pattern based on X.

Hence by Lemma 3.1 there exist complementary submatrices )(r and Xn _

of X of orders r and n - r, respectively, such that f and g have indetermi-

nate patterns based on xr and xn -r’ respectively. Thus there exist

permutation matrices P and Q such that

A, o# M,
(h‘h) PAQ— * A2 ’ mQ‘-‘ * ME »
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Let us suppose that a nonzero element of PMQ does not lie within M1 or

M2. Then by Lemma 3.2 it follows that the indeterminate in this position
must appear in det(M). But this contradicts (4.3), where f and g have

indeterminate patterns based on Xr and Xn - respectively. Thus the

asterisks in (4.4) correspond to zero matrices and this contradicts the

hypothesis that A is fully indecomposable.

Let A be a matrix of order n with elements in F and let M = A » X
be the formal incidence matrix associated with A. Suppose that det(M) £ O.

Then it follows that there exist permutation matrices P and Q such that

(4.6) PAQ = ’

vhere the matrices A1, A2, ceey Ar are fully indecomposable. These ]

matrices are called the fully indecomposable components of A. The pre~

ceding discussion implies the following theorem of Dulmage and Mendelsohn
[1: 31. : a

Theorem 4.2. _Iit A be a matrix 3{ order n 'with elements _iﬂ;g ©i1eld

F and let M = A » X be the formal incidence matrix associated with A.

Suppose that det(M) # 0. Then the fully indecomposable components of A

are unigue apart from order and row and column permutations within com-

gonents.
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Proof. }Suppose that A1, , Ar and B1, S Bs are two sets of

fully indecomposable components of A. Then by Theorem 4.1 we have that

(’4.7) det(M) = *f1 Lie f]‘ = ig‘ see gs,

where £, and g 3 are irreducible polynomials with indeterminate patte.nc

i
*
based on the appropriate submatrices of X. But F is a unique factori-

'zat.',on domain and this mcans that r = s and the £, and the g 3 are the

i
same apart from qrder and scalar factors. But then the fully indecom-

'posable components Ali and B, are the same apart from order and row and

J
¢olumn permuta‘.tions' within components.

Let A be a fully indecomposable matrix of order n with elements in
Fand let M = A » X be the formal .incidence matrix associated with A.
A very naf.ural_ problem emerges at this point, namely, the determination
of all matrices A with the é@ irreducible polynomial det(M). This
problem is solved for us by the following theorém of Sinkhorn and Knopp
(17}. (Slinkhorn and Knbpp state their result for nonnegative real ma-

trices.  But an:inspection of their. proof shows that the result holds

tor matrices with elements in an arbitrary tield.) A diagonal product

of a matrix A of order n is a product of n elements of A with no two

of the elements on a line.

Theorem 4.3.: Let A be a fully indecomposable matrix of order n

with elements in a field F. Suppose that all of the nonzero diagonal

. products of A are equal. Then there exists a unique matrix B of order
FroEMeRe : = 23

n with nonzero elements g.gg_-gt: rank one such that b = a,, whenever

iJ 1)

aid,!o.

o ev-giiiiadioni.
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The preceding theorem of Sinkhorn and Kiopp implies the following.
Theorem 4.4. Let A and B be fully indecomposable matrices of order
n with elements in a fleld Fand let M= A » X and N = B # X be the
formal incidence matrices associated with A and B, respectively. Sup-
pose that g
H

(4.8) det(M) = c det(N) ¢ 0,

vhere c is a scalar in F. Then there exist dlagona) matrices D and E

vith elements in F such that

(4.9) DAE = B,

Proof. The hypotheses of the theorem and Lemma 3.2 imply that
8 # 0 if and only if bij § 0. We now form the matrix

(1.10) C = [ag}b,],

vhere in (4.10) a.ij’ is the inverse of a‘i,j for aiJ £ 0 and all of the

repaining elements of C are zero. Then (4.8) implies that all of the :
nonzero diagonal products of C are equal. Hence we may apply the
theorem of Sinkhorn and Knopp to the fully indecomposable matrix C.

This tells us that there exist nonzero elements d1,. 00, dn and

€,5¢+¢, € in F such that ]
n 1

1

=1
(k.11) d:'.e‘1 'aidbid

vhenever a;;b 1 y O. Hence it follows that

(4.12) diaiJeJ = bid (L, 3= 1)
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But these equations are the same as (4.9).

5. Concluding Remarks
The formal incidence matrix seems ideally suited for the study of
combinatorial problems related to transversal theory [11]). But matrices
vith indeterminate elements are also applicable to other probiems of
great combinatorial interest. We discuss briefly a matrix equation
dealing with set intersections. Let A and B be matrices of sizes m
by t and t by n, respectively, with elements in F. We now disregard

our previous notation and let
(5'1) x=diag[x1,ocu’ xt],

where Xyjee0y X, are t independent indeterminates over F. Then

t
(5.2) AXB = Y

is a matrix of size m by n such that every element of Y is a linear
form in x,,..., x, over F. Ryser [15] has established the following

t
thearem concerning the matrix equation (5.2).

Theorem 5.1. Let Y be & matrix of size m by n such that every

element of Y is & linear form_i_an,..., x, over F and let Yyreeos ¥y

denote the products of x;,..., x, taken r at a time. We assume that

the fixed integer r satisfies

(5.3) 2 <r < rank(Y) - 2

and that every element of the rth compound matrix Cr(Y) of Y is a linear

form in y,,..-, ¥, ovex F. Then there exist matrices A and B of sizes

mby t and t by n, respectively, with elements in F such that

ind N ek

>-l—'_; S il O
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(5.4) AXB = Y.
Wwe remark that Theorem 5.1 is also valid with (5.3) replaced by

the requirements

(5.5) 2§r=rank(y)- 1 and t = rank(Y).

There has been considerable interest of late in intersection proper-
ties of finite sets [6, 7, 9, 13, 14]. The matrix equation (5.2) is well
suited for the study of such problems. For example, suppose that A is a
(0,1)-matrix of size m by t and that B = AT 1s the transpose of the
matrix A. Then (5.2) assumes the form
(5.6) aal =y,

vhere Y is a symmetric matrix of order m. Moreover, if A is regarded as

the incidence matrix for subsets S,,..., § of S = [x,',..., xt}, then the

matrix Y has in its (1,J) position the sum of the indeterminates in

Si ns It follows that the matrix Y gives a complete description

5

of the intersection patterns Si N S,. Ryser [14] has used this obser-

J
vation for the study of certain combinatorial properties of set inter-
sections. But all of these topics and especially the combinatorial

applications hold great potential for further study.
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